Abstract
The Milky Way is surrounded by large amounts of gaseous matter that are slowly being accreted over cosmic timescales to support star formation in the disk. The corresponding gas-accretion rate represents a key parameter for the past, present, and future evolution of the Milky Way. In this article, I discuss our current understanding of gas accretion processes in the Galaxy by reviewing past and recent observational and theoretical studies. The first part of this review deals with the spatial distribution of the different gas phases in the Milky Way halo, the origin of the gas, and its total mass. The second part discusses the gas dynamics and the physical processes that regulate the gas flow from the outer Galactic halo to the disk. From the most recent studies follows that the present-day gas accretion rate of the Milky Way is a few solar masses per year, which is sufficient to maintain the Galaxy's star-formation rate at its current level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.