Abstract

An analytical solution is presented for gas absorption with or without a first-order or zero-order chemical reaction in a laminar non-Newtonian power-l model falling liquid film. For physical absorption, the first ten eigenvalues, series coefficients and related quantities are computed accurately by a quasinumerical method which shows considerable improvement over previous investigations. The range of applicability of the penetration theory solution is also established to indicate in what regions will the finite film thickness and complete velocity profile be important in determining the absorption rate. It is found that the range of dimensionless axial contact length X* in which the penetration theory is valid diminishes rapidly with increasi values of the power-law index n. For chemical absorption, the solution can be obtained by a linear superposition principle in terms of a “transie part” in which the effect of hydrodynamics within the liquid film is of importance and a “steady part” in which the reaction rate is controlling. In the “transient part” solution, the first ten eigenvalues and related quantities are reported for a variety of values of n and the dimensionl reaction rate parameter k l* or k 0*. Certain asymptotic solutions from the penetration theory are also given and their range of applicab estimated. For any given n, it is estimated that only when k 1* or k 0* is less than approximately 10 will the finite film thickness and velocity profile have any effect on the absorption rate as compared to that calculated from the penetration theory with chemical reaction. The non-Newt character of the liquid film also has a significant influence on the absorption rate. At a fixed X*, the absorption enhancement due to reaction is when n = ∞ and is smallest when n = 0. The solutions obtained in this work are useful either for predicting absorption rates or for deter molecular diffusivity (and reaction rate constant) of gases in non-Newtonian falling liquid films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.