Abstract

Wearable thermoelectric generator arrays have the potential to use waste body heat to power on-body sensors and create, for example, self-powered health monitoring systems. In this work, we demonstrate that a surface coating of a conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT-Cl), created on one face of a wool felt using a chemical vapor deposition method was able to manifest a Seebeck voltage when subjected to a temperature gradient. The wool felt devices can produce voltage outputs of up to 120 mV when measured on a human body. Herein, we present a strategy to create arrays of polymer-coated fabric thermopiles and to integrate such arrays into familiar garments that could become a part of a consumer’s daily wardrobe. Using wool felt as the substrate fabric onto which the conducting polymer coating is created allowed for a higher mass loading of the polymer on the fabric surface and shorter thermoelectric legs, as compared to our previous iteration. Six or eight of these PEDOT-Cl coated wool felt swatches were sewed onto a backing/support fabric and interconnected with silver threads to create a coupled array, which was then patched onto the collar of a commercial three-quarter zip jacket. The observed power output from a six-leg array while worn by a healthy person at room temperature (ΔT = 15 °C) was 2 µW, which is the highest value currently reported for a polymer thermoelectric device measured at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.