Abstract

Wind energy has emerged as a potential alternative to traditional energy sources for economical and clean power generation. One important aspect of wind energy generation is the layout design of the wind farm so as to harness maximum energy. Due to its inherent computational complexity, the wind farm layout design problem has traditionally been solved using nature-inspired algorithms. An important issue in nature-inspired algorithms is the termination condition, which governs the execution time of the algorithm. To optimize the execution time, appropriate termination conditions should be employed. This study proposes the concept of a rewarding mechanism to achieve optimization in termination conditions while maintaining the solution quality. The proposed rewarding mechanism, adopted from the stochastic evolution algorithm, is incorporated into a genetic algorithm. The proposed genetic algorithm with the rewarding mechanism (GARM) is empirically tested using real data from a potential wind farm site with different rewarding iterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.