Abstract

Lactobacillus-deficient cervicovaginal microbiota, including Gardnerella vaginalis, are implicated in cervical remodeling and preterm birth. Mechanisms by which microbes drives outcomes are not fully elucidated. We hypothesize that Gardnerella vaginalis induces matrix metalloproteinases through TLR-2, leading to epithelial barrier dysfunction and premature cervical remodeling. Cervicovaginal cells were treated with live Gardnerella vaginalis or Lactobacillus crispatus or their bacteria-free supernatants for 24 h. For TLR-2 experiments, cells were pretreated with TLR-2 blocking antibody. A Luminex panel was run on cell media. For human data, we conducted a case-control study from a prospective pregnancy cohort of Black individuals with spontaneous preterm (sPTB) (n = 40) or term (n = 40) births whose vaginal microbiota had already been characterized. Cervicovaginal fluid was obtained between 20 and 24 weeks’ gestation. Short cervix was defined as < 25 mm by second trimester transvaginal ultrasound. MMP-9 was quantified by ELISA. Standard analytical approaches were used to determine differences across in vitro conditions, as well as MMP-9 and associations with clinical outcomes. Gardnerella vaginalis induced MMP-1 in cervical cells (p = 0.01) and MMP-9 in cervical and vaginal (VK2) cells (p ≤ 0.001 for all). TLR-2 blockade mitigated MMP-9 induction by Gardnerella vaginalis. MMP-9 in cervicovaginal fluid is higher among pregnant individuals with preterm birth, short cervix, and Lactobacillus-deficient microbiota (p < 0.05 for all). MMP-9 is increased in the cervicovaginal fluid of pregnant individuals with subsequent sPTB. Our in vitro work ascribes a potential mechanism by which a cervicovaginal microbe, commonly associated with adverse pregnancy outcomes, may disrupt the cervicovaginal epithelial barrier and promote premature cervical remodeling in spontaneous preterm birth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.