Abstract

From the tropical plant Gardenia ternifolia Schumach. and Thonn. (Rubiaceae), eight stereoisomeric 2,3-dihydrobenzo[b]furan neolignans, named gardenifolins A-H (1a-d and 2a-d), were isolated and fully structurally characterized. Reversed-phase chromatography of a stem bark extract afforded two peaks, viz. mixtures I and II, each one consisting of two diastereomers and their respective enantiomers. They were resolved and stereochemically analyzed by HPLC on a chiral phase coupled to electronic circular dichroism (ECD) spectroscopy, giving single ECD spectra of all eight stereoisomers. The double-bond geometries (E or Z) of the gardenifolins A-H and their relative configurations (cis or trans) at the stereogenic centers C-7 and C-8 in the dihydrofuran ring system were assigned by 1D and 2D NMR methods, in particular, using NOE difference experiments, whereas the absolute configurations of the isolated enantiomers were established by ECD spectroscopy by applying the reversed helicity rule. The individual pure gardenifolin isomers A-H showed the most different cytotoxic effects against the human cancer HeLa cell line, with 1d and 2a displaying the highest activities, with IC50 values of 21.0 and 32.5 μM, respectively. Morphological experiments indicated that gardenifolin D (1d) induces apoptosis of HeLa cells at 25 μM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call