Abstract

The ability to interpret and create an argument from data is a crucial skill for budding scientists, yet one that is seldom practiced in introductory courses. During this argumentation module, students in a large lecture class will work in groups to understand how a single mutation can lead to an obvious phenotypic change among tomatoes. Before the module begins, students are provided with background information on mutations and techniques to give them a starting point to explain what they will see in the data. In class, students will use data from the primary literature to understand the relationship between single amino acid mutations and phenotypic variation within the context of a &ldquo;big question&rdquo; about garden tomatoes that ripen without turning red. Over two days, small groups will negotiate data, create and evaluate hypotheses, and consolidate their understanding through clicker questions and writing tasks. Together, they will craft an argument for how mutations can lead to phenotypic changes, even if they do not lead to disease like in many common examples. Through this activity, the instructor and students work together to understand an engaging and relevant example of the central dogma. During our implementation of this activity, we observed high engagement with the in-class and out-of-class aspects of the argumentation activities to explain how a single mutation could result in a visible change to the flesh of a tomato. <em>Primary Image:</em>&nbsp;Garden Variety Mutations. Students work in small groups, interpreting data and evaluating hypotheses that explain how a single nucleotide change can alter tomato plant coloration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call