Abstract

Garcinol is a polyisoprenylated benzophenone derivative isolated from the fruit rind of Garcinia indica and has exhibited chemopreventive effects on azoxymethane)-induced colonic aberrant crypt foci in mice. In this study, we investigated whether garcinol protects against dextran sulfate sodium (DSS) induced colitis/inflammation and azoxymethane/DSS-induced inflammation-related colon tumorigenesis in male ICR mice. We also aimed to delineate the possible molecular mechanisms responsible for these effects. Treatment with garcinol prevented shortening of the colon length and the formation of aberrant crypt foci and improved the inflammation score in the mouse colon stimulated by DSS. Moreover, administration of garcinol markedly decreased DSS-induced inducible nitric oxide synthase, cyclooxygenase-2, and proliferating cell nuclear antigen protein expression. The dietary administration of garcinol effectively reduced the tumor size and incidence in the mouse colon. Western blot and immunohistochemical analysis revealed that administration of garcinol significantly downregulated cyclooxygenase-2, cyclin D1, and vascular endothelial growth factor expression via inhibition of the extracellular signal-regulated protein kinase 1/2, phosphatidylinositol 3 kinase/Akt/p70 ribosomal S6 kinase, and Wnt/β-catenin signaling pathways. Our results suggest that garcinol may merit further clinical investigation as a chemoprophylactic food that helps prevent colitis-associated colon cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.