Abstract

We consider garbage collection (GC) in dynamic, multiprocessor real-time systems. We consider the time-based, concurrent GC approach and focus on real-time scheduling to obtain mutator timing assurances, despite memory allocation and garbage collection. We present a scheduling algorithm called GCMUA. The algorithm considers mutator activities that are subject to time/utility function time constraints, stochastic execution-time and memory demands, and overloads. We establish that GCMUA probabilistically lower bounds each mutator activity's accrued utility, lower bounds the system-wide total accrued utility, and upper bounds the timing assurances' sensitivity to variations in mutator execution-time and memory demand estimates. Our simulation experiments validate our analytical results and confirm GCMUA's effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.