Abstract

We consider a one-dimensional, time-reversal-invariant system with attractive interactions and spin-orbit coupling. Such a system is gapless due to the strong quantum fluctuations of the superconducting order parameter. However, we show that a sharply defined topological phase with protected, exponentially localized edge states exists. If one of the spin components is conserved, the protection of the edge modes can be understood as a consequence of the presence of a spin gap. In the more general case, the localization of the edge states arises from a gap to single-particle excitations in the bulk. We consider specific microscopic models and demonstrate both analytically and numerically (using density matrix renormalization group calculations) that they can support the topologically nontrivial phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.