Abstract

We study the anisotropic Heisenberg (XYZ) spin-1/2 chain placed in a magnetic field pointing along the x-axis. We use bosonization and a renormalization group analysis to show that the model has a non-trivial fixed point at a certain value of the XY anisotropy a and the magnetic field h. Hence, there is a line of critical points in the (a,h) plane on which the system is gapless, even though the Hamiltonian has no continuous symmetry. The quantum critical line corresponds to a spin-flop transition; it separates two gapped phases in one of which the Z_2 symmetry of the Hamiltonian is broken. Our study has a bearing on one of the transitions of the axial next-nearest neighbor Ising (ANNNI) chain in a transverse magnetic field. We also discuss the properties of the model when the magnetic field is increased further, in particular, the disorder line on which the ground state is a direct product of single spin states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.