Abstract

We extend the results of previous work on vortices in systems with tensorial order parameters. Specifically, we focus our attention on systems with a Ginzburg–Landau free energy with a global U(1)P×SO(3)S×SO(3)L symmetry in the phase, spin and orbital degrees of freedom. We consider axially symmetric vortices appearing on the spin–orbit locked SO(3)S+L vacuum. We determine the conditions required on the Ginzburg–Landau parameters to allow for an axially symmetric vortex with off diagonal elements in the order parameter to appear. The collective coordinates of the axial symmetric vortices are determined. These collective coordinates are then quantized using the time dependent Ginzburg–Landau free energy to determine the number of gapless modes propagating along the vortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.