Abstract
In honeycomb multilayers with staggered AB-sublattice potentials, we predict gapless edge states localized to either of the odd and the even layers for the AA^{prime } stacking order in which the sublattice-pseudospin polarizations of adjacent layers are antiparallel. Gaps in the projected layer-pseudospin spectrum suppress interlayer hopping between odd and even layers. The layer-valley Chern number corresponding to the edge states was obtained by decomposing the occupied state into two layer-pseudospin sectors by using a projected layer-pseudospin operator. For the AB^{prime } stacking, the sublattice-pseudospin polarizations of adjacent layers are antiparallel, but the layer-pseudospin spectrum gap closes at the interface of the topologically different states, leading to gapped edge states. For the AA and AB stackings where the sublattice-pseudospin polarizations of the adjacent layers are parallel, the gapless edge states corresponding to quantum valley Hall states are evenly distributed across the layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.