Abstract

We study the nature of edge states in extrinsically and spontaneously dimerized states of two-dimensional spin-$\frac{1}{2}$ antiferromagnets, by performing quantum Monte Carlo simulation. We show that a gapless edge mode emerges in the wide region of the dimerized phases, and the critical exponent of spin correlators along the edge deviates from the value of Tomonaga-Luttinger liquid (TLL) universality in large but finite systems at low temperatures. We also demonstrate that the gapless nature at edges is stable against several perturbations such as external magnetic field, easy-plane XXZ anisotropy, Dzyaloshinskii-Moriya interaction, and further-neighbor exchange interactions. The edge states exhibit non-TLL behavior, depending strongly on model parameters and kinds of perturbations. Possible ways of detecting these edge states are discussed. Properties of edge states we show in this paper could also be used as reference points to study other edge states of more exotic gapped magnetic phases such as spin liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.