Abstract

The glyceraldehyde-3-phosphate dehydrogenase (GAPDH)/Siah1 signaling pathway has been recognized as a sensor of nitric oxide (NO). It is associated with a variety of injurious conditions, suggesting its therapeutic potential for spinal cord injury (SCI). Sivelestat sodium (SIV), a neutrophil elastase (NE) inhibitor initially used to treat acute lung injury, has been known to protect against compression-induced and ischemic SCI. However, little is known about the relationship between the GAPDH/Siah1 cascade and SIV. Thus, we aimed to assess the role of GAPDH/Siah1 cascade in traumatic SCI and its possible link with SIV. Rats were assigned to four groups: sham group, SCI group, 5-mg/kg SIV group, and 10-mg/kg SIV. The traumatic SCI was induced by dropping a 10-g impactor from a height of 25mm on the dorsal surface of T9 and T10. SIV was injected intraperitoneally immediately after surgery. Our results showed that the nuclear translocation of GAPDH was induced together with the nuclear translocation of Siah1 and the formation of the GAPDH/Siah1 complex in the spinal cord after traumatic SCI. However, the activation of the GAPDH/Siah1 cascade was attenuated by treatment with SIV. We also found that SIV suppressed apoptosis, NE and inducible nitric oxide synthase (iNOS) protein expressions, the number of NE and iNOS immunostained cells, the production of interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α), and the activation of nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) signaling in the spinal cord. The behavioral tests showed that SIV promoted functional recovery after traumatic SCI as reflected in the sustained increase in the Basso–Beattie–Bresnahan (BBB) scores throughout the observation period. In conclusion, our results reveal GAPDH/Siah1 as a novel signaling pathway during the progression of SCI, which can be blocked by SIV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.