Abstract

We predict two switchable one-dimensional (1D) spin-polarized semiconductors based on metal-organic coordination chains constructed out of Fe, V, and zwitterionic quinone (ZQ) molecules using first-principle density functional theoretical analysis. The Fe-ZQ coordination chain can be converted from a semiconductor to a half-metal when oxidized by chlorine (Cl). Upon chlorination, the magnetic moment of the Fe-ZQ is increased from 4 μB to 5 μB, per iron atom. In addition, the bimetallic (Fe-ZQ-V-ZQ) ferromagnetic semiconducting coordination chain with a very small energy gap of only 90 meV can be converted to an antiferromagnetic semiconductor with a large gap of more than 1 eV when oxidized by chlorine. Its magnetic moment is found to be 8 μB per heterobimetallic unit (Fe and V) after chlorination, and 7 μB without chlorine. These unique properties, namely a switchable or reversible electronic and magnetic characteristics with a transition between different semiconducting states, make these coordination chains to be highly promising candidates for specific applications as multi-functional switch in nanoelectronics and spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call