Abstract

Understanding the origin and distribution of electronic gap states in metal halide perovskite (MHP) thin films is crucial to the further improvement of the efficiency and long-term stability of MHP-based optoelectronic devices. In this work, the impact of Lewis-basic additives introduced in the precursor solution on the density of states in the perovskite bandgap is investigated. Ultraviolet photoemission spectroscopy and contact potential difference measurements are conducted on MHP thin films processed from dimethylformamide (DMF)-based solutions to which either no additive, dimethylsulfoxide (DMSO), or N-methylpyrrolidine-2-thione (NMPT) isadded. The results show the presence of a density of states in the gap of methylammonium lead halide films processed from DMSO-containing solution. The density of gap states is either suppressed when the methylammonium concentration in mixed cation films is reduced or when NMPT is used as an additive, and eliminated when methylammonium (MA) is replaced with cesium or formamidinium (FA). These results are consistent with the notion that reaction products that result from DMSO reacting with MA+ in the precursor solution are responsible for the formation of gap states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call