Abstract

The existence and stability of gap solitons are investigated in the semi-infinite gap of a parity-time (PT)-symmetric periodic potential (optical lattice) with a higher-order diffraction. The Bloch bands and band gaps of this PT-symmetric optical lattice depend crucially on the coupling constant of the fourth-order diffraction, whereas the phase transition point of this PT optical lattice remains unchangeable. The fourth-order diffraction plays a significant role in destabilizing the propagation of dipole solitons. Specifically, when the fourth-order diffraction coupling constant increases, the stable region of the dipole solitons shrinks as new regions of instability appear. However, fundamental solitons are found to be always linearly stable with arbitrary positive value of the coupling constant. We also investigate nonlinear evolution of the PT solitons under perturbation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call