Abstract

A library of engineered promoters of various strengths is a useful genetic tool that enables the fine-tuning and precise control of gene expression across a continuum of broad expression levels. The methylotrophic yeast Pichia pastoris is a well-established expression host with a large academic and industrial user base. To facilitate manipulation of gene expression spanning a wide dynamic range in P. pastoris, we created a functional promoter library through mutagenesis of the constitutive GAP promoter. Using yeast-enhanced green fluorescent protein (yEGFP) as the reporter, 33 mutants were chosen to form the functional promoter library. The 33 mutants spanned an activity range between ∼0.6% and 19.6-fold of the wild-type promoter activity with an almost linear fluorescence intensity distribution. After an extensive characterization of the library, the broader applicability of the results obtained with the yEGFP reporter was confirmed using two additional reporters (β-galactosidase and methionine adenosyltransferase [MAT]) at the transcription and enzyme activity levels. Furthermore, the utility of the promoter library was tested by investigating the influence of heterologous MAT gene expression levels on cell growth and S-adenosylmethionine (SAM) production. The extensive characterization of the promoter strength enabled identification of the optimal MAT activity (around 1.05 U/mg of protein) to obtain maximal volumetric SAM production. The promoter library permits precise control of gene expression and quantitative assessment that correlates gene expression level with physiologic parameters. Thus, it is a useful toolbox for both basic and applied research in P. pastoris.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.