Abstract
Creating sub-micron hotspots for applications such as heat-assisted magnetic recording (HAMR) is a challenging task. The most common approach relies on a surface-plasmon resonator (SPR), whose design dictates the size of the hotspot to always be larger than its critical dimension. Here, we present an approach which circumvents known geometrical restrictions by resorting to electric field confinement via excitation of a gap-mode (GM) between a comparatively large Gold (Au) nano-sphere (radius of 100 nm) and the magnetic medium in a grazing-incidence configuration. Operating a λ=785 nm laser, sub-200 nm hot spots have been generated and successfully used for GM-assisted magnetic switching on commercial CoCrPt perpendicular magnetic recording media at laser powers and pulse durations comparable to SPR-based HAMR. Lumerical electric field modelling confirmed that operating in the near-infrared regime presents a suitable working point where most of the light's energy is deposited in the magnetic layer, rather than in the nano-particle. Further, modelling is used for predicting the limits of our method which, in theory, can yield sub-30 nm hotspots for Au nano-sphere radii of 25–50 nm for efficient heating of FePt recording media with a gap of 5 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.