Abstract

Electrically coupled inhibitory interneurons dynamically control network excitability, yet little is known about how chemical and electrical synapses regulate their activity. Using two-photon glutamate uncaging and dendritic patch-clamp recordings, we found that the dendrites of cerebellar Golgi interneurons acted as passive cables. They conferred distance-dependent sublinear synaptic integration and weakened distal excitatory inputs. Gap junctions were present at a higher density on distal dendrites and contributed substantially to membrane conductance. Depolarization of one Golgi cell increased firing in its neighbors, and inclusion of dendritic gap junctions in interneuron network models enabled distal excitatory synapses to drive network activity more effectively. Our results suggest that dendritic gap junctions counteract sublinear dendritic integration by enabling excitatory synaptic charge to spread into the dendrites of neighboring inhibitory interneurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.