Abstract
The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together, these data and analyses shed light on important physiological modifiers of morphological information in dictating species-specific shape, and reveal them to be a novel instructive input into head patterning in regenerating planaria.
Highlights
Development, cancer suppression, large-scale remodeling, and regeneration all hinge on an organism’s ability to store and process information about its correct anatomical structure, and correct any deviations from that structure that may occur during injury or other environmental impacts [1,2]
Planarian flatworm species display a broad range of head shapes, from the very rounded to the almost triangular, with varied shapes of auricles (Figure 1A–D)
To interrogate the mechanisms responsible for regeneration and maintenance of head shape, G. dorotocephala planarians were amputated along a plane positioned posterior to the pharynx but anterior to the tail, to produce a pre-tail (PT) fragment
Summary
Development, cancer suppression, large-scale remodeling, and regeneration all hinge on an organism’s ability to store and process information about its correct anatomical structure, and correct any deviations from that structure that may occur during injury or other environmental impacts [1,2]. It is commonly assumed that species-specific anatomical shapes are encoded in the genome, data from environmental epigenetics have long suggested that morphological outcomes are a function of inheritance and of environment and life history inputs [3]. Transformative advances in regenerative medicine and synthetic bioengineering require us to know which inputs can be provided to a cellular system to induce specific morphological outcomes—rational control of growth and form. This is a truly difficult problem because of the complex nonlinearity of biological regulation [7]. Step 1 is uncovering processes that provide instructive control over the determination of large-scale shape
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.