Abstract

Intracellular Ca(2+) activated calmodulin (CaM) inhibits gap junction channels in the low nanomolar to high micromolar range of [Ca(2+)]i. This regulation plays an essential role in numerous cellular processes that include hearing, lens transparency, and synchronized contractions of the heart. Previous studies have indicated that gap junction mediated cell-to-cell communication was inhibited by CaM antagonists. More recent evidence indicates a direct role of CaM in regulating several members of the connexin family. Since the intracellular loop and carboxyl termini of connexins are largely "invisible" in electron microscopy and X-ray crystallographic structures due to disorder in these domains, peptide models encompassing the putative CaM binding sites of several intracellular domains of connexins have been used to identify the Ca(2+)-dependent CaM binding sites of these proteins. This approach has been used to determine the CaM binding affinities of peptides derived from a number of different connexin-subfamilies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call