Abstract

Gap junction channels are major determinants of intercellular resistance to current flow between cardiac myocytes. Alterations in gap junctions may contribute to development of arrhythmia substrates in patients. However, there is significant interspecies variation in the types and amounts of gap junction subunit proteins (connexins) expressed in disparate regions of mammalian hearts. To elucidate determinants of conduction properties in the human heart, we characterized connexin phenotypes of specific human cardiac tissues with different conduction properties. The distribution and relative abundance of Cx37, Cx40, Cx43, Cx45, and Cx46 were studied immunohistochemically using monospecific antibodies and frozen sections of the sinoatrial node and adjacent atria. AV node and His bundle, the bundle branches, and the left and right ventricular walls. Patterns of expression of these connexins in the human heart differed from those in previous animal studies. Sinus node gap junctions were small and sparse and contained Cx45 and apparently smaller amounts of Cx40 but no Cx43. AV node gap junctions were also small and contained mainly Cx45 and Cx40 but, unlike the sinus node, also expressed Cx43. Atrial gap junctions were larger than nodal junctions and contained moderate amounts of Cx40, Cx43, and Cx45. Junctions in the bundle branches were the largest in size and contained abundant amounts of Cx40, Cx43, and Cx45. Gap junctions in ventricular myocardium contained mainly Cx43 and Cx45; only a very small and amount of ventricular Cx40 was detected in subendocardial myocyte junctions and endothelial cells of small to medium sized intramural coronary arteries. Minimal Cx37 and Cx46 immunoreactivity was detected between occasional atrial or ventricular myocytes. The relative amounts of individual connexins and the number and size of gap junctions vary greatly in specific regions of the human heart with different conduction properties. These differences likely play a role in regulating cardiac conduction velocity. Differences in the connexin phenotypes of specific regions of the human heart and experimental animal hearts must be considered in future experimental or modeling studies of cardiac conduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.