Abstract

Oocyte development is characterized by impressive changes in chromatin structure and function in the germinal vesicle (GV) that are crucial in conferring to the oocyte meiotic and developmental competence. During oogenesis, oocyte and follicular cells communicate by paracrine and junctional mechanisms. In cow, cumulus-enclosed oocytes (CEOs) isolated from early antral follicles have uncondensed chromatin (GV0), functionally open gap junction (GJ)-mediated communications, and limited meiotic competence. The aim of the present study was to analyze the role of GJ communications on the chromatin remodeling process during the specific phase of folliculogenesis that coincides with the transcriptional silencing and the sequential acquisition of meiotic and developmental capability. CEOs were cultured in a follicle-stimulating hormone-based culture system that sustained GJ coupling and promoted oocyte growth and transition from GV0 to higher stages of condensation. When GJ functionality was experimentally interrupted, chromatin rapidly condensed, and RNA synthesis suddenly ceased. These effects were prevented by the addition of cilostamide, a phosphodiesterase 3 inhibitor, indicating that the action of GJ-mediated communication on chromatin structure and function is mediated by cAMP. Prolonging GJ coupling during oocyte culture before in vitro maturation enhanced the ability of early antral oocytes to undergo meiosis and early embryonic development. Altogether, the evidence suggests that GJ-mediated communication between germinal and somatic compartments plays a fundamental role in the regulation of chromatin remodeling and transcription, which in turn are related to competence acquisition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.