Abstract

The density of gap junctions in four Drosophila melanogaster mutants with abnormal wing disc development has been determined using quantitative electron microscopy and compared with the gap junction density in wild-type wing discs. No appreciable differences relative to wild-type controls were found in the cell death mutant vestigial or in the mildly hyperplastic mutant lethal giant disc which could not be accounted for in terms of altered lateral plasma membrane surface density or as an extension of the gap junction growth which normally occurs during the third larval stage of development in wild-type wing discs. However, both the severely hyperplastic mutant l (3)c43 hs1 and the neoplastic mutant lethal giant larva have significant reductions in the gap junction surface density, the number of gap junctions, and the gap junction areal fraction of the lateral plasma membrane compared with wild-type controls. These differences cannot be attributed to altered lateral plasma membrane surface densities which are not significantly different from wild-type control wing discs. The reduced gap junction density in severely hyperplastic and neoplastic wing discs suggests that alterations in the number or distribution of gap junctions may be as disruptive to normal growth and development as their complete absence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.