Abstract

Global (all cells in an acinus) and focal (1-2 out of 10-15 cells) stimulation of pancreatic acini with bombesin or t-butyloxycarbonyl-Tyr(SO3)-Nle-Gly-Tyr-Asp-2-phenylethyl ester (CCKJ) together with modulation of gap junction (GJ) permeability by octanol and NO2- was used to study the role of GJ permeability in controlling [Ca2+]i oscillations and enzyme secretion. GJ permeability was quantitated by measuring fluorescence recovery after photobleaching. Octanol at 0.5 mM markedly reduced, whereas 15 mM NO2- increased GJ permeability. Focal application of bombesin caused synchronized oscillations in the entire acinus, whereas global stimulation resulted in asynchronous oscillations. Increasing GJ permeability with NO2- had no effect on bombesin-evoked [Ca2+]i oscillations. Octanol inhibited ongoing oscillations evoked by focal or global bombesin stimulation. However, when GJ were blocked prior to stimulation, subsequent global stimulation with bombesin induced long-lasting oscillations in all cells. Re-establishing GJ communication for as little as 37.5 s conferred GJ dependence on the order and time of [Ca2+]i spiking evoked by global bombesin stimulation. Focal and global stimulation with CCKJ gave different patterns of [Ca2+]i oscillations. However, in contrast to bombesin, inhibition of GJ with octanol had no effect on oscillations induced by global CCKJ stimulation. Increasing GJ permeability with NO2- synchronized CCKJ-stimulated oscillations by equalizing the amplitude and increasing the frequency in all cells within an acinus. These observations suggest that amplitude and frequency of [Ca2+]i oscillations can be regulated independently of each other, and that GJ permeable molecules modulate the frequency of [Ca2]i oscillation in an agonist-specific manner. Regardless of the agonist, increasing the frequency of oscillations by modulation of GJ permeability correlated with an increased enzyme secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.