Abstract

The interaction between the low molecular weight G protein ras p21 and a guanosine triphosphatase activating protein (GAP) uncouples a heterotrimeric G protein (Gk) from muscarinic receptors. Through the use of isolated atrial cell membranes and genetically engineered GAP deletion mutants, the src homology regions (SH2-SH3) at the amino terminus of GAP have been identified as the domains responsible for this effect. Deletion of the domain required to stimulate the guanosine triphosphatase activity of ras p21 relieves the requirement for ras p21 in this system. A model is presented that suggests that ras p21 induces a conformational change in GAP, which allows the SH2-SH3 regions of GAP to function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.