Abstract

The development of surface-enhanced Raman scattering (SERS) biosensor platforms based on the sandwich combination of an SERS substrate and Raman reporter coated gold nanoparticle (AuNP) labeled with antibody has been widely performed for highly sensitive detection of biomolecules. The size of biomolecules located between these SERS-active materials dictates the sensitivity enhancement of the sensor. However, no suitable molecular size is provided. In this study, we report the gap-dependent SERS enhancement model using the combination of two SERS-active materials of 2D arrays of gold core-silver shell nanoparticles (Au@Ag core-shell NPs) as SERS-active substrates and mercaptobenzoic acid (MBA)-labeled AuNPs as SERS probes. The distance between these two materials is finely tuned using layer-by-layer assembled polyelectrolyte multilayer films. The morphology of the polyelectrolyte spacer is controlled into a droplet nanostructure, which is assumed to have a comparable shape with globular biomolecules. The well-controlled height or thickness of polyelectrolyte nanodroplet was achieved by changing number of deposition cycles. By increasing the thickness of the polyelectrolyte nanodroplet, MBA SERS intensities gradually decreased until at 40 nm-thick nanodroplet film and maintained afterward. This spacer thickness defined the limit of plasmonic coupling effect from this SERS probe-substrate combination. The SERS enhancement capability of this model was compared to conventional SERS immunoassay using three different antigen-antibody complex sizes of prostate-specific antigen, carcinoembryonic antigen, and carbohydrate antigen 19-9. Good agreement of the limitation of plasmon coupling as a function of the distance between the SERS substrate-probe combination using this developed model and SERS immunoassay was found. The finding provides valuable guidelines for immune-system selection in SERS immunosensors based on SERS substrate-probe combination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call