Abstract

Severe burn injury results in a multifaceted physiological response that significantly alters drug pharmacokinetics and pharmacodynamics (PK/PD). This response includes hypovolemia, increased vascular permeability, increased interstitial hydrostatic pressure, vasodilation, and hypermetabolism. These physiologic alterations impact drug distribution and excretion-thus varying the drug therapeutic effect on the body or microorganism. To this end, in order to optimize critical care for the burn population it is essential to understand how burn injury alters PK/PD parameters. The purpose of this article is to describe the relationship between burn injury and drug PK/PD. We conducted a literature review via PubMed and Google to identify burn-related PK/PD studies. Search parameters included "pharmacokinetics," "pharmacodynamics," and "burns." Based on our search parameters, we located 38 articles that studied PK/PD parameters specifically in burns. Twenty-seven articles investigated PK/PD of antibiotics, 10 assessed analgesics and sedatives, and one article researched an antacid. Out of the 37 articles, there were 19 different software programs used and eight different control groups. The mechanisms behind alterations in PK/PD in burns remain poorly understood. Dosing techniques must be adapted based on burn injury-related changes in PK/PD parameters in order to ensure drug efficacy. Although several PK/PD studies have been undertaken in the burn population, there is wide variation in the analytical techniques, software, and study sample sizes used. In order to refine dosing techniques in burns and consequently improve patient outcomes, there must be harmonization among PK/PD analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.