Abstract

"Green chemistry" is a simple and easily reproductible method that provides nanoparticles characterized by better stability and good dispersion in an aqueous solution. Nanoparticles can be synthesized by algae, bacteria, fungi, and plant extracts. Ganoderma lucidum is a commonly used medicinal mushroom with distinctive biological properties, such as antibacterial, antifungal, antioxidant, anti-inflammatory, anticancer, etc. In this study, aqueous mycelial extracts of Ganoderma lucidum were used to reduce AgNO3 to form silver nanoparticles (AgNPs). The biosynthesized nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analysis. The maximum UV absorption was obtained at 420 nm, which represents the specific surface plasmon resonance band for biosynthesized silver nanoparticles. SEM images showed particles as predominantly spherical, while FTIR spectroscopic studies illustrated the presence of functional groups that can support the reducing of ion Ag+ to Ag(0). XRD peaks ratified the presence of AgNPs. The antimicrobial effectiveness of synthesized nanoparticles was tested against Gram-positive and Gram-negative bacterial and yeasts strains. The silver nanoparticles were effective against pathogens, inhibiting their proliferation, and thus reducing the risk to the environment and to public health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.