Abstract

The present study aimed to determine the cardioprotective effect of Ganoderma atrum polysaccharide (PSG-1) in doxorubicin (DOX)-treated mice and its underlying mechanism. Results indicated that PSG-1 treatment significantly alleviated DOX-induced myocardial damage via attenuating apoptosis and maintaining the structure of myocardial mitochondria. Meanwhile, PSG-1-evoked cardioprotection was associated with an increase of manganese superoxide dismutase activity and decrease of caspases activities. Moreover, administration of PSG-1 suppressed DOX-induced mitochondrial disorders, which was evidenced by reducing reactive oxygen species, elevating mitochondrial membrane potential and inhibiting the opening of mitochondrial permeability transition pore. PSG-1 was also found to reduce the release of cytochrome c from mitochondria to cytoplasm in mice subjected to DOX. Finally, our findings have provided comprehensive evidence for the cardioprotective effects of PSG-1 via reduction of apoptosis mediated by modification of the mitochondrial intrinsic apoptotic pathway, indicating that PSG-1 could be developed as an effective therapeutic strategy to prevent DOX-induced cardiotoxicity in clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.