Abstract

The aim of the present study was to examine the role of Ganoderma atrum polysaccharide (PSG-1) in reactive oxygen species (ROS) generation and mitochondrial function in hyperglycemia-induced angiopathy. In this work, ROS scavenger, oxidizing agent tert-butylhydroperoxide (tBH), mitochondrial permeability transition pore (mPTP) blockers, and caspase inhibition are used to investigate whether PSG-1 may promote survival of human umbilical vein cells (HUVECs) through preventing the overproduction of ROS and mitochondrial dysfunction. Experimental results show that exposure of HUVECs to 35.5 mmol/L glucose increases the proportion of cells undergoing apoptosis. PSG-1, mPTP blocker, or caspase inhibition can reduce apoptosis and ROS generation. PSG-1 also increases mitochondrial Bcl-2 protein formation and mitochondrial membrane potential (ΔΨm) but inhibits Bax translocation, cytochrome c release, and caspase activation. In summary, vascular protection of PSG-1 can be mediated by a mitochondria-ROS pathway. ROS generation and mPTP induction are critical for high glucose-mediated apoptosis. PSG-1 ameliorates endothelial dysfunction by inhibiting oxidative stress and subsequent mitochondrial dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.