Abstract

Ethnophamacological relevanceGanoderma lucidum has been used as a medicinal mushroom for more than 2000 years in China. Ganoderic acid D (GAD) as a representative active triterpenoid from Ganoderma lucidum is known to possess anticancer activity. However, the mechanism involved in its anticancer cell process is still largely elusive. Aim of the studyOur study aimed to investigate the anticancer effects of GAD on the esophageal squamous cell carcinoma (ESCC) cells and the underlying mechanisms at the cell level. Materials and methodsEC9706 and Eca109 cells were treated with GAD (0, 10, 20, 40 μM) for 24 h. The cell viability, cell cycle, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), apoptosis rate, caspase-3 activity, autophagic flux, lysosomal function were examined. Cell cycle, apoptotic, autophagy and mTOR signal pathway related proteins such as P53, Cyclin B1, CytoC, PARP, Beclin-1, P62, LC3, PI3K, AKT and mTOR were analyzed by Western blot approach. ResultsGAD inhibited cell proliferation and induced both apoptosis and autophagic cell death. In particular, we found that in the early stage of the autophagic process, GAD could initiate and enhance the autophagy signal while in the late stage it on the contrary could block the autophagic flux by impairing the autophagosome-lysosome fusion and inhibited the lysosomal degradation. Besides the autophagic cell death, GAD also induced the apoptosis mediated by caspase-related process in parallel. The mechanism involved for the synergistic apoptotic and autophagic cell death was also explored. We found that GAD down-regulated the expression of PI3K, AKT and mTOR phosphorylated proteins in the mTOR signaling pathway which thus led to the synergistic effect on apoptosis and autophagic cell death in the ESCC cells. ConclusionsIn summary, this study has documented that GAD may inhibit cell proliferation through the mTOR pathway in ESCC cells, and induce synergistic apoptosis and autophagic cell death by disrupting the autophagic flux. This work therefore also suggests that GAD may be used as an efficient anticancer adjuvant for ESCC cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.