Abstract

Conversion of the soluble, non-toxic amyloid β-protein (Aβ) into an aggregated, toxic form rich in β-sheets is considered a key step in the development of Alzheimer's disease. Accumulating evidence suggests that lipid rafts in membranes play a pivotal role in this process. We have proposed that Aβ-(1-40) specifically bound to a ganglioside cluster forms cytotoxic fibrils via a conformational transition from an α-helix-rich structure to a β-sheet-rich one. In the present study, we compared the interaction of Aβ-(1-40) and Aβ-(1-42) with both model and living cell membranes. Aβ-(1-42) exhibited lipid specificity and affinity similar to Aβ-(1-40), though its amyloidogenic activity was more than 10-fold that of Aβ-(1-40). Antibody staining experiments, using the A11 antibody specific to Aβ oligomers, demonstrated that oligomers were not detected during the aggregation process, and cell death was observed only after significant accumulation of the proteins, suggesting that the fibril-induced disruption of cell membranes leads to the cytotoxicity. Furthermore, we succeeded in visualizing fibrils formed on cell membranes using total internal reflection fluorescence microscopy. Aβ-(1-40) formed long fibrils extruding to the aqueous phase, whereas Aβ-(1-42) fibrils appeared to be laterally co-assembled and short.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.