Abstract

Transection of the fimbria fornix leads to retrograde degeneration of axotomised septal cholinergic neurons as manifested by loss of choline acetyltransferase and p75 NGFR immunoreactivity. Intracerebroventricularly administered nerve growth factor initiated at the time of axotomy can prevent these changes. We have shown that concurrent intraperitoneal administration of GM1 with a low and otherwise unprotective intracerebroventricular dose of nerve growth factor, can also prevent the loss of these fimbria fornix axotomised cholinergic neurons, where GM1 alone does not have this effect. This study further confirms the neuroprotective actions of GM1 and suggests that it may interact to potentiate the effect of nerve growth factor on these axotomised septal cholinergic neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.