Abstract

BackgroundGanglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies.MethodsExpression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases.ResultsAnti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2 expression correlated with susceptibility of tumor cell lines to cytotoxic effect of anti-GD2 antibodies.ConclusionsResults of this study demonstrate that anti-GD2 antibodies not only passively bind to the surface of tumor cells but also directly induce rapid cell death after the incubation with GD2-positive tumor cells. These results suggest a new role of GD2 as a receptor that actively transduces death signal in malignant cells.

Highlights

  • Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells

  • Selection of relevant GD2-positive and GD2-negative tumor cell lines We have analyzed the expression of ganglioside GD2 on various tumor cell lines of different origin by performing surface staining of the cells with anti-GD2 monoclonal antibodies (mAbs)

  • We found that there was a significant decrease in membrane potential (MMP) in Apoptotic volume decrease (AVD)- and 7-AAD-positive populations when compared with AVD- and 7-AAD-negative populations of the cells treated with anti-GD2 mAb, staurosporine, or untreated control cells

Read more

Summary

Introduction

Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. Tumor-associated gangliosides are very promising target molecules for the development of new anti-cancer drugs. As a potential target molecule for anti-tumor therapy, ganglioside GD2 has certain advantages when compared to other tumor-associated gangliosides since this glycolipid is highly expressed in tumor cells and it is not expressed at all, or expressed at a very low level in normal cells. In tumors the highest level of GD2 expression is observed on the cell surface of almost all types of the primary neuroblastomas reaching ~107 molecules per cell [2,3]. GD2 is expressed in variety of other tumors including bone and soft-tissue sarcomas, small cell lung cancer, and brain tumors [5,6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call