Abstract
Gangliosides are known to be suitable targets for immune attack against cancer but they are poorly immunogenic. Active immunization with ganglioside/BCG or liposome vaccines results in moderate titer IgM antibody responses of short duration. Covalent attachment of poorly immunogenic antigens to immunogenic proteins is a potent method for inducing an IgG antibody response. GD3, a dominant ganglioside on malignant melanoma, was modified by ozone cleavage of the double bond in the ceramide backbone, an aldehyde group introduced and used for coupling via reductive amination to epsilon-amino-lysyl groups of proteins. Utilizing this method, GD3 conjugates were constructed with: 1. Synthetic multiple antigenic peptide (MAP) constructs expressing 4 repeats of a malaria T-cell epitope; 2. Outer membrane proteins (OMP) of Neisseria meningitidis; 3. Cationized bovine serum albumin; 4. Keyhole limpet hemocyanin (KLH); and 5. Polylysine. In addition, conjugates containing only the GD3 oligosaccharide were synthesized. All constructs were tested for antigenicity using anti-GD3 antibody R24, and for immunogenicity in mice. Serum antibody levels were analyzed by ELISA and immune thin-layer chromatography. Results in the mouse show a significant improvement in the IgM antibody response and a consistent IgG response against GD3 using GD3-KLH conjugates. Other carrier proteins and the use of GD3 oligosaccharide were significantly less effective. If improved immunogenicity and clinical benefit with conjugate vaccines can be demonstrated in patients with melanoma, this approach may be applicable to patients with other tumors of neuroectodermal origin, including gliomas, glioblastomas, astrocytomas, and neuroblastomas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.