Abstract

The developmental profiles of 15 different gangliosides of the optic lobes and cerebrum of the chicken were followed from the 6 th day of incubation to hatching and correlated to morphological development. Five of these gangliosides appearing in both structures between the sixth and tenth day, have not been reported previously in higher vertebrates. Three chromatographed on TLC-plates similarly to GT3, GT2, and GT1c gangliosides, which have been demonstrated in fish brain. One fraction moved just below GQ1b and is suggested, to contain GQ1c. These "novel" gangliosides, which are possibly related to a recently proposed separate and probably phylogenetically older biosynthetic pathway, contained up to 20% of total ganglioside sialic acid. The fifth "novel" fraction, containing up to 16% of total ganglioside-sialic acid, moved below the penta-sialoganglioside GP1 and is suggested to contain hexa-sialogangliosides.There were two main changes in ganglioside synthesis, which were identical in both structures.The first occurred from the sixth to the eleventh day, parallel to decreased proliferation, maximal cell migration and neuroblast differentiation, GD3 and GD2 decreased rapidly in favour of GQ1b, GP1, and to the "novel" fractions, described above.The second occurred from the eleventh to the eighteenth day, parallel to increased growth and arborization of dendrites and axons as well as functional establishment of synaptic contacts, there was a sharp rise in the amount of GD1b, GT1b, and GD1a. Concomitantly the "novel" gangliosides decreased. At hatching GD1a was the predominant ganglioside. GM3, GM2, and GM1 were always minor fractions, each accounting for less than 4% of total ganglioside-sialic acid. GM4 was never detected, indicating neglegible myelinisation until hatching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.