Abstract

The action of some nicotinic acetylcholine receptor agonists was re-examined on the surface field potentials (N-waves) evoked by electrical stimulation of the lateral olfactory tract in guinea-pig olfactory cortical brain slices. Bath superfusion of nicotine or the nicotinic stimulants dimethylphenylpiperazinium (DMPP), lobeline, cytisine, tetramethylammonium or suberyldicholine (up to 100 μM) had little or no effect on the extracellular N-wave amplitude, or the membrane potential, input resistance or excitability of olfactory neurones recorded intracellularly. In contrast, the muscarinic agonists, carbachol or oxotremorine-M consistently depressed the field in a reversible dose-dependent manner. Interestingly, in the presence of the ganglionic stimulants DMPP (n = 6 slices) or lobeline (n = 5 slices) (10–50 μM), the effects of carbachol or oxotremorine-M were antagonized in a week competitive-type manner (pA 2 values = 5.58 and 5.63 respectively, estimated from Schild plots, constrained to unity slope). This anti-muscarinic action was unaffected by d-tubocurarine or hexamethonium. Nicotine, cytisine, tetramethylammonium and suberyldicholine showed much weaker and inconsistent carbachol-blocking effects. Combination of DMPP with atropine produced dose ratio shifts close to those predicted for a common-site interaction of two competitive antagonists. In conclusion, consistent pre- or postsynaptic nicotinic agonist actions could not be detected in olfactory cortex slices; however, some ganglionic nicotinic agonists were shown to exhibit significant anti-muscatinic effects on this preparation. We suggest this action might be due to a direct atropine-like mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.