Abstract

Using intracellular lineage tracers to study the main neurogenic lineage (N lineage) of the glossiphoniid leech embryo, we have characterized events leading from continuous columns of segmental founder cells (nf and ns primary blast cells) to discrete, segmentally iterated ganglia. The separation between prospective ganglia was first evident as a fissure between the posterior boundary of nf- and the anterior boundary of ns-derived progeny. We also identified the sublineages of nf-derived cells that contribute parallel stripes of cells to each segment. These stripes of cells project ventrolaterally from the dorsolateral margin of each nascent ganglion to the ventral body wall. The position and orientation of the stripes suggests that they play a role in forming the posterior segmental nerve; they are not coincident with the ganglionic boundary, and they form well after the separation of ganglionic primordia. Previous work has shown that cells in the anterior stripe express the leech engrailed-class gene. Thus, in contrast to the role of cells expressing engrailed in Drosophila, the stripes of N-derived cells expressing an engrailed-class gene in leech do not seem to play a direct role in segmentation or segment polarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.