Abstract

We demonstrate AuCl3-doped graphene transparent conductive electrodes integrated in GaN-based ultraviolet (UV) light-emitting diodes (LEDs) with an emission peak of 363 nm. AuCl3 doping was accomplished by dipping the graphene electrodes in 5, 10 and 20 mM concentrations of AuCl3 solutions. The effects of AuCl3 doping on graphene electrodes were investigated by current-voltage characteristics, sheet resistance, scanning electron microscope, optical transmittance, micro-Raman scattering and electroluminescence images. The optical transmittance was decreased with increasing the AuCl3 concentrations. However, the forward currents of UV LEDs with p-doped (5, 10 and 20 mM of AuCl3 solutions) graphene transparent conductive electrodes at a forward bias of 8 V were increased by ~48, 63 and 73%, respectively, which can be attributed to the reduction of sheet resistance and the increase of work function of the graphene. The performance of UV LEDs was drastically improved by AuCl3 doping of graphene transparent conductive electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.