Abstract

GaN-based high electron mobility transistors (HEMTs) with a nearly strain-free high-Al-content quaternary barrier and electron mobilities up to 1590 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /Vs have been grown on 4H-SiC using molecular beam epitaxy (MBE). The processed devices with 150-nm gate length exhibit a high dc performance with a maximum current density of 2.3 A/mm and an extrinsic transconductance up to 675 mS/mm that is among the highest values reported until now for any III-N transistor. We further present, to our knowledge, the first power measurements at 10 GHz of MBE-grown GaN HEMTs with nearly lattice-matched InAlGaN barrier achieving 47% power-added efficiency at 10 V and an output power density of 5.6 W/mm at 30-V bias.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call