Abstract

GaNAs strain-compensating layers (SCLs) are applied to bury InAs quantum dots (QDs) grown on GaAs substrates. The main idea is the compensation of the compressive strain induced by InAs QDs with the tensile strain in the GaNAs SCLs to keep the total strain of the system minimum. The application of the GaNAs SCLs resulted in a systematic shift of photoluminescence (PL) peaks of the InAs QDs toward the longer wavelengths with the increase of the nitrogen (N) composition in GaNAs, and luminescence at a wavelength of 1.55 µm has been achieved from the InAs QDs for the N composition of 2.7% in the GaNAs SCL. This result is promising for the application of GaNAs SCL for InAs-QDs-based long-wavelength light sources for optical-fiber communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.