Abstract
With the increasing environmental pollution and energy crisis, it is significant to develop environmentally friendly and adjustable photocatalysts for water splitting. Here we explored the optoelectronic properties of several H-GaN/MgI2 vdW heterostructures by regulating different polarization surfaces and numbers of GaN layers. Our results demonstrate that all structures, except 2L-Ga-GaN/MgI2, exhibit excellent physical stability. Moreover, the band structures and band edge positions demonstrate that only the heterostructure of 3L-Ga-GaN/MgI2 with both suitable band alignment (type-II) and an acceptable band gap (∼1.92 eV) is most satisfactory for water splitting. Additionally, the absorption coefficient of the 3L-Ga-GaN/MgI2 heterostructure can reach over ∼105 cm-1, which has further confirmed its excellent advantage in photocatalysis. Finally, in the case of 6% external strain for the 3L-Ga-GaN/MgI2 heterostructure, a rollover in band alignment (from type-II to type-I) is exhibited. These promising features of the GaN/MgI2 vdW heterostructure give a new paradigm for developing novel efficient and adjustable photocatalytic water-splitting materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.