Abstract

Using generative adversarial network (GAN) Goodfellow et al. (2014) for data enhancement of medical images is significantly helpful for many computer-aided diagnosis (CAD) tasks. A new GAN-based automated tampering attack, like CT-GAN Mirsky et al. (2019), has emerged. It can inject or remove lung cancer lesions to CT scans. Because the tampering region may even account for less than 1% of the original image, even state-of-the-art methods are challenging to detect the traces of such tampering. This paper proposes a two-stage cascade framework to detect GAN-based medical image small region forgery like CT-GAN. In the local detection stage, we train the detector network with small sub-images so that interference information in authentic regions will not affect the detector. We use depthwise separable convolution and residual networks to prevent the detector from over-fitting and enhance the ability to find forged regions through the attention mechanism. The detection results of all sub-images in the same image will be combined into a heatmap. In the global classification stage, using gray-level co-occurrence matrix (GLCM) can better extract features of the heatmap. Because the shape and size of the tampered region are uncertain, we use hyperplanes in an infinite-dimensional space for classification. Our method can classify whether a CT image has been tampered and locate the tampered position. Sufficient experiments show that our method can achieve excellent performance than the state-of-the-art detection methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call