Abstract
Climate change has spurred a shift to electric transportation, but aviation faces challenges with electric energy storage and propulsion. Cryogenically cooled superconducting motors, along with cryogenically cooled power electronics, offer a solution to increase the efficiency and power density of electric aircraft. This paper evaluates the feasibility of cryogenic power electronics by characterising new technologies (GaN, nanocrystalline) using new experimental techniques. It is found that the on resistance reductions of GaN E-high electron mobility transistors at cryogenic temperatures depend on the maximum blocking voltage of the device, and the size of the gate resistor for ohmic p-GaN devices. Different types of nanocrystalline cores are shown to vary greatly in their behaviour at cryogenic temperatures, which is measured using a modified core loss measurement circuit. Further analysis shows that the losses of a GaN based cryogenic inverter could potentially halve that of an equivalent Si based inverter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.