Abstract

Gamow vectors and resonances play an important role in scattering theory, especially in the physics of metastable states. We study Gamow vectors and resonances in a time-dependent setting using the Borel summation method. In particular, we analyze the behavior of the wave function ψ(x,t) for one dimensional time-dependent Hamiltonian \(H=-\partial_{x}^{2}\pm2\delta(x)(1+2r\cos\omega t)\) where ψ(x,0) is compactly supported.We show that ψ(x,t) has a Borel summable expansion containing finitely many terms of the form \(\sum_{n=-\infty}^{\infty}e^{i^{3/2}\sqrt{-\lambda_{k}+n\omega i}|x|}A_{k,n}e^{-\lambda_{k}t+n\omega it}\) , where λ k represents the associated resonance. This expression defines Gamow vectors and resonances in a rigorous and physically relevant way for all frequencies and amplitudes in a time-dependent model.For small amplitude (|r|≪1) there is one resonance for generic initial conditions. We calculate the position of the resonance and discuss its physical meaning as related to multiphoton ionization. We give qualitative theoretical results as well as numerical calculations in the general case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call