Abstract

Regions with high star formation rates (SFR) in starburst galaxies (SBGs) are frequently accompanied by high density clouds of interstellar matter (ISM). This may create nearly perfect conditions for generating diffuse gamma-ray radiation as high energy cosmic rays accelerated in supernovae explosions of massive progenitor stars interact with the ambient protons. If the current paradigm that supernovae are the origin sites of high energy cosmic rays is valid, then the star forming regions rich in supernovae may become the laboratories to test and study this phenomenon. The gamma-ray luminosity of these extragalactic objects is suppressed by a large distance factor compared to supernovae in our own galaxy. However, flux estimates indicate that if star bursting regions have a proper combination of critical parameters (intersteller medium density, age, size, supernova rate, magnetic field strength) the cumulative enhancement of the gamma-ray luminosity resulting from multiple explosions of supernovae into dense ISM may generate an observable flux for nearby SBGs such as M82, IC342. A search for TeV gamma-ray emission from IC342 was conducted with the Whipple 10m gamma-ray telescope from September 2002 to March 2004.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.