Abstract

The nonlinear kinetic model of cosmic ray (CR) acceleration in supernova remnants (SNRs) is used to describe the relevant properties of Cassiopeia A (Cas A). In order to reproduce the SNR's observed size, expansion rate and thermal X-ray emission we employ a piecewise homogeneous model for the progenitor's circumstellar medium developed by Borkowski et al. (1996). It consists of a tenuous inner wind bubble, a dense shell of swept-up red supergiant wind material, and a subsequent red supergiant wind region. A quite large SNR interior magnetic field B_d approx 1 mG is required to give a good fit for the radio and X-ray synchrotron emission. The steep radio spectrum is consistent with efficient proton acceleration which produces a significant shock modification and leads to a steep electron spectrum at energies E_e < 1 GeV. The calculated integral gamma-ray flux from Cas A, F propto E_gamma^-1, is dominated by pi^0-decay gamma-rays due to relativistic protons. It extends up to roughly 30 TeV if CR diffusion is as strong as the Bohm limit. At TeV energies it satisfactorily agrees with the value 5.8 x 10^-13 cm^-2 s^-1 detected by the HEGRA collaboration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.